A 3D finite element model for hyperthermia injury of blood-perfused skin.

نویسندگان

  • Domoina Ratovoson
  • Vincent Huon
  • Franck Jourdan
چکیده

The objective of this study is to propose a numerical model of thermal damage to the skin. This model simulates the propagation of a burn and suggests treatments to prevent it from spreading. In order to achieve this goal, we developed a 3D multi-layer finite element model of the skin coupled with a model presenting hyperthermic damage. The numerical model of the skin takes account of not only the thermal properties of various layers, but also blood perfusion and veins. The model of thermal damage is based on the Arrhenius' law. We tested two various quick intervention treatments so as to prevent the burn from spreading. The first treatment consists of cooling the burned zone with a flow of cool water at 10°C, whereas the second solution simulates the apposition of ice on the burn. The results show that, according to the severity of the burn, the second treatment seems to be the most appropriate. Moreover, our model opens interesting prospects in the analysis of hyperthermic damage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study on Fe3O4 Magnetic Nanoparticles ‎Size Effect on Temperature Distribution ‎of Tumor in Hyperthermia: A Finite ‎Element Method ‎

   In recent years, Hyperthermia has been used as an emerging technique for cancer treatment, especially for localized tumors. One of the promising cancer treatment approaches is magnetic nanoparticle (MNPs) Hyperthermia. In this theoretical work, the temperature distribution of a common tumor over the different sizes of Fe3O4 magnetic nanoparticles, namely 25, 50, 100, and 200 nm, was stud...

متن کامل

A study on behavior of block pavement using 3D finite element method

Three dimensioned finite element analysis were conducted on concrete block paving. In order to verify the calculated results, an experimental case study was analyzed. Good agreement was observed between the measured and the calculated results. Based on the finite element analysis results and available failure models, comprehensive design charts were developed for port and industrial pavement wh...

متن کامل

A Super - Element Based on Finite Element Method for Latticed Columns Computational Aspect and Numerical Results

This paper presents a new super-element with twelve degrees of freedom for latticed columns. This elements is developed such that it behaves, with an acceptable approximation, in the same manner as a reference model does. The reference model is constructed by using many Solid elements. The cross section area, moments of inertia, shear coefficient and torsoinal rigidity of the developed new elem...

متن کامل

A Super - Element Based on Finite Element Method for Latticed Columns Computational Aspect and Numerical Results

This paper presents a new super-element with twelve degrees of freedom for latticed columns. This elements is developed such that it behaves, with an acceptable approximation, in the same manner as a reference model does. The reference model is constructed by using many Solid elements. The cross section area, moments of inertia, shear coefficient and torsoinal rigidity of the developed new elem...

متن کامل

An investigation of the effects of osteoporosis, impact intensity and orientation on human femur injuries: a parametric finite element study

Objective: Femur is the strongest, longest and heaviest bone in the human body. Due to the great importance of femur in human body, its injury may cause large numbers of disabilities and mortality. Considering various effective parameters such as mechanical properties, geometry, loading configuration, etc. can propel the study to the trustable results.. Methods: A 3D finite element model of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer methods in biomechanics and biomedical engineering

دوره 18 3  شماره 

صفحات  -

تاریخ انتشار 2015